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LETTER TO THE EDITOR 

On the density of states for the quantum percolation problem 

J T Chayest-t, L ChayestP, Judy R FranztII, James P Sethnatll 
and S A Trugman*# 
t Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA 
* Department of Physics, Princeton University, Princeton, NJ 08540, USA 

Received 18 June 1986 

Abstract. For the site dilution model on the hypercubic lattice Zd,  d b 2, we examine the 
density of states for the tight-binding Hamiltonian projected onto the infinite cluster. It 
is shown that, with probability one, the corresponding integrated density of states is 
discontinuous on a set of energies which is dense in the band. This result is proved by 
constructing states supported on finite regions of the infinite cluster, analogous to the 
Kirkpatrick and Eggarter zero-energy molecular state. 

The electronic properties of disordered media are often described by the tight-binding 
Hamiltonian, defined on the square integrable functions [ ’ ( E d ) ,  by 

X=-A+C i U, 

where A is the lattice Laplacian (i.e. the hopping operator) and the U, are (independent 
and identically distributed) random potentials with distribution g(du). Models of this 
form were first considered by Anderson (1958) for the case of a uniform distribution. 

For general g(du), two related quantities of fundamental interest are the density 
of states, p ( E ) ,  and the integrated density of states, n ( E ) .  The latter is defined by 
considering a finite rectangle A c hd and computing 

n ( E ;  A) = IA1-l (number of eigenvalues of X, s E )  (2) 
where X,, is the restriction of X to the rectangle A with (say) Neumann boundary 
conditions. Sub-additive arguments may be applied to show that, with probability 
one, a thermodynamic limit, n ( E ) ,  exists and is independent of the realisation (see, 
e.g., Benderskii and Pastur 1970). Then p ( E )  may be ‘defined’ as dn(E)/dE.  

There have been many results demonstrating varying degrees of smoothness for 
n ( E )  depending on the behaviour of the potential distribution g(du). Under rather 
general circumstances, Craig and Simon (1983) proved log-Holder continuity of n( E ) ,  
while by a quite different argument Delyon and Souillard (1984) established the 
continuity of n ( E ) .  Wegner (1981) proved that if g is bounded, then so is p ( E ) ,  a 
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result extended by Maier (1985) to the case in which g E Lp, P > 1 .  Very strong results 
for one dimension have been obtained by Simon and Taylor (1985) and Campanino 
and Klein (1986). For special distributions, e.g., a Cauchy distribution or a Gaussian 
of sufficiently large width, p (  E )  turns out to be analytic at all energies (Lloyd 1969, 
Edwards and Thouless 1971, Constantinescu et a1 1984). For an excellent review of 
these and other mathematical aspects of localisation theory, the reader is referred to 
the lecture notes of Spencer (1986). 

In cases where g(dv) is not particularly smooth, some negative results have been 
discovered. Halperin (1967) (see also Simon and Taylor (1985)) showed that if a 
one-dimensional chain has a random potential which can take on only two values (i.e. 
substitutional disorder), then p ( E )  will fail to be continuous.? Somewhat more 
disturbing are the zero-energy ‘molecular states’ found by Kirkpatrick and Eggarter 
(1972) for the case of dilution disorder-sometimes known as quantum percolation. 

Quantum percolation, first studied by de Gennes et a1 (1959a, b), can be formally 
regarded as a tight-binding model of the form ( 1  j where U, = 0 with probability p and 
is infinite otherwise. (For convenience, the diagonal portion of the lattice Laplacian 
has also been set to zero.) It is straightforward to show that the spectrum of this model 
is [ - 2 4  +2d], and that the total number of states per volume (i.e. n(2d)) is p .  In 
general, there are two types of states: For any p ,  some states are isolated on finite 
clusters of U = 0 (active) sites; if p exceeds the percolation threshold, there are also 
states supported on an active infinite cluster. The first class is both uninteresting, in 
the sense that it does not contribute to transport, and pathological in the sense that it 
creates spurious discontinuities in the integrated density of states. We therefore take 
p above the percolation threshold (which necessitates d 3 2) and confine attention to 
sites which are part of an infinite cluster; indeed, as we will later discuss, it is 
straightforward to define an n ( E )  on the restriction of configurations to their active 
infinite components. 

The observation of Kirkpatrick and Eggarter (1972) was that even if one removes 
the finite clusters, there are still discontinuities in n( E)-most notably at E =&arising 
from compactly localised (molecular) states on the infinite cluster. Kirkpatrick and 
Eggarter identified states contributing to discontinuities at both E = 0 and E = * l ;  
their zero-energy state is illustrated in figure 1 .  Since configurations allowing these 
states occur with non-zero probability, a positive fraction of the spectral measure will 
be concentrated at these energies. It should be noted that these states are localised in 
a much stronger sense than the typical exponentially localised states; these molecular 
states vanish outside a finite region, and hence have zero localisation length. On the 
basis of numerical observations, which have since been confirmed and extended by 
other groups (Jonson and Franz 1980, Franz 1985), Kirkpatrick and Eggarter concluded 
that such molecular states should occur at several additional energies. Some further 
results along these lines have been reported in Shapir et a1 (1982). 

The purpose of this letter is to demonstrate just how bad a density of states is 
capable of being. In particular, we will show that for the quantum percolation model, 
molecular states can be constructed arbitrarily close to any energy in the band, with 
positive density (so that, by equation (2), n ( E )  has discontinuities on a dense subset 
of [ -2d ,  +2d]). If one assumes that the quantum percolation model has extended 
states (which is presumably the case for d 2 3 and 1 - p  sufficiently small), this indicates 

t For such systems, Carmona er a /  (1986) have recently shown that n ( E )  can have a non-trivial singular 
component. 
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Figure 1. An example of Kirkpatrick and Eggarter (1972). The values of the (unnormalised) 
molecular wavefunction are depicted; U: active sites (U = 0); U: vacant sites ( U  = +E). 

the coexistence of localised and extended states, contrary to what is expected for 
models with less pathological potentials. While certain aspects of this seem to have 
been understood by Shapir et a1 (1982), it is hoped that our results will provide a 
useful counterexample in formulating extensions of the regularity theorems discussed 
above. 

We begin by defining the relevant density of states, n , ( E ) ,  for the quantum 
percolation problem. Suppose then that A c Z d  is a finite rectangle. Define X&,, to 
be the Hamiltonian, with Neumann boundary conditions, restricted to (active) sites 
which are in the connected components of the boundary, aA. It is not hard to show 
that N j A (  E; A), the number of eigenvalues of X * , , j A  of energy not exceeding E, satisfies 
the usual sub-additivity condition. Thus, by the sub-additive ergodic theorem (Ackoglu 
and Krengel 1981), the quantities nJA(E; A ) =  A-'NJA(E; A)  converge almost surely 
to a (realisation-independent) function which we denote by n,( E). We will call n,( E)  
the infinite component integrated density of states. 

Remark. The spectrum of this model again lies in the interval [-2d, + 2 d ] .  Morally, 
the analogue of the statement n(2d) = p is simply n,(2d) = P o c ( p ) ,  where P,( p) is the 
infinite cluster density for Bernoulli percolation on Zd at site density p. However, a 
proof of this statement requires that the percentage of sites connected to the boundary, 
aA, which are not in the infinite cluster, tends to zero as A t Zd. A sufficient condition 
for this is that ~ ' ( p ) ,  the expected size of finite clusters, is not infinite. It should be 
noted that there are models for which P,( p )  > 0, but x'( p) = 00 (Aizenman et al1986a). 
However, it is anticipated that for standard (i.e. short-range) percolation models, 
x'( p) < m whenever P,( p )  > 0. This is known to be true in two dimensions (Kesten 
1982); for general dimension, the strongest results along these lines have been obtained 
by Chayes er a1 (1986). 

We now derive our principal result. 

Proposition. For the quantum percolation model on Zd,  the infinite component 
integrated density of states, n , ( E ) ,  has discontinuities on a dense subset of the band. 
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Proof: Our strategy is to find active site configurations, %, which occur along the active 
infinite componentt, and which are capable of supporting molecular states {Y,( %)} 
with eigenvalues {E,(%)} such that U E , ( % )  is dense in [ - 2 d ,  +2d]. For clarity of 
exposition (principally pictorial), we will first focus on two dimensions. 

Let c be a finite, connected cluster, assumed for simplicity to lie above the line 
x = 0 and contain the point (0, 1 ) .  Let c R  be the mirror image of c reflected through 
the x axis and let % = c w c R  (see figure 2 ) .  We claim that even when % is 'attached' 
to a segment of an infinite cluster (e.g. a straight portion running along the x-axis), 
there are eigenfunctions which vanish on the complement of %. Indeed, let {$, Ij = 
1 , 2 , .  . . , IcI} be the finite cluster wavefunctions of c with energies { E , } ,  and 4; the 
associated (mirror) wavefunctions of c R .  Then the wavefunctions Y, = ( l / d ) [ $ ,  - $PI 
satisfy the Schrodinger equation and have energy E,. 

Figure 2. Construction of molecular states with matching clusters; U: active sites ( U  = 0); 
M: vacant sites (U =a); 1: support of Y. 

The above argument is easily carried to higher dimensions; one need only reflect 
any finite cluster across the ( d  - 1)-dimensional hyperplane just below its lowest point 
and construct the antisymmetric modes. Since these wavefunctions automatically 
vanish on the symmetry plane (whether or not these sites are active) such mirror pairs 
can easily be attached to an infinite cluster. 

Since any given mirror pair %' = c w  c R  is a finite configuration, it occurs with a 
(well defined, non-zero) density along the infinite cluster with probability one; this 
density provides a lower bound on the discontinuity of n,( E )  at the energies E = E,( %). 
Furthermore, since the clusters we employ are arbitrary, such discontinuities occur at 
all possible finite cluster energies. Thus for any fixed energy Eo in the band, one can 
always find a cluster V supporting a wavefunction $((e) with an energy E ( % ' )  such 
that / E o -  E (  %')I is as small as desired. 

t It should be remarked that for all these site percolation models on Zd,  whenever p is above threshold, the 
infinite cluster is unique (Aizenmann er a/ 1986b). This is not relevant to our argument, which holds just 
well on the Bethe lattice (with either Dirichlet or Neumann boundary conditions) where it is known that 
there are infinitely many infinite clusters. I t  is worth pointing out that the Bethe lattice is, in fact, where 
many of the molecular states have been observed numerically (Jonson and Franz 1980, Franz 1985). 
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We conclude with the following remarks. 
1. It is worth noting that the construction as described above is not the only 

mechanism for producing molecular states and, indeed, that there are others which 
do not require the full mirror symmetry. In fact, such other mechanisms are quite 
important in obtaining any estimate on the contribution of molecular states to the total 
spectral measure. 

2. It is clear that, unless the finite cluster energies E,(%)  are somehow removed 
from the spectrum, there can be no sharp mobility edge for quantum percolation. The 
traditional arguments against the coexistence of localised and extended states do not 
apply to this model. Of course, unlike the states supported on finite clusters, these 
states are on branches of the infinite cluster which cannot be pruned. It is an open 
question whether these compactly localised states induce complicated structure into 
the rest of the spectrum, or whether the ‘remainder’ of the spectrum has a smooth 
density of states and meaningful mobility edges. 
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